Chem. Ber. 119, 2159-2172 (1986)

## Synthesen mit Cyclobutadienen, 13<sup>1)</sup>

# Azapentafulvene aus 2,3,4-Tri-*tert*-butylcyclobutadien-1-carbonsäureestern und Isonitrilen

Jürgen Fink und Manfred Regitz\*

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern

Eingegangen am 14. Januar 1986

Aus den kinetisch stabilisierten Cyclobutadienen 6a bzw. b und den Isonitrilen 7a - c erhält man die Azapentafulvene 9a - d. Im Gegensatz dazu reagiert 6a mit 7d ausschließlich unter Bildung des konstitutionsisomeren Azapentafulvens 11e. Beide Möglichkeiten (9f und 11f) werden bei der Umsetzung von 6a mit 7e wahrgenommen. Die Strukturzuordnung der Isomeren 9 und 11 beruht auf <sup>13</sup>C-NMR-Untersuchungen sowie auf der Röntgenstrukturanalyse für 9a. Hydrolyse von 9 und 11 macht die tri-*tert*-butylsubstituierten Cyclopentadienone 20a, b und 21 zugänglich. Photochemisch läßt sich 21 in das Isomere 20a umwandeln, das auch unmittelbar aus dem Cyclobutadien 6a und Kohlenmonoxid erhalten werden kann.

#### Syntheses with Cyclobutadienes, 131)

#### Azapentafulvenes from 2,3,4-Tri-tert-butylcyclobutadiene-1-carboxylic Esters and Isonitriles

From kinetically stabilized cyclobutadienes 6a and b and isonitriles 7a-c the azapentafulvenes 9a-d are obtained. In contrast, 6a reacts with 7d exclusively to form the constitution isomeric azapentafulvene 11e. Both isomers (9f and 11f) are realized in the reaction of 6a with 7e. The structural assignment of the isomers 9 and 11 is based on <sup>13</sup>C NMR investigations as well as on an X-ray analysis performed for 9a. Hydrolysis of 9 and 11 yields the tri-*tert*-butyl substituted cyclopentadienones 20a, b and 21. By photochemical means 21 is transformed into the isomer 20a, which can also be obtained directly from the cyclobutadiene 6a and carbon monoxide.

Kinetisch stabilisierte Cyclobutadiene des Typs 6 sind ausgesprochen cycloadditionsfreudig gegenüber Mehrfachbindungssystemen, wobei die Hetero-Doppel- und -Dreifachbindung am meisten Interesse beansprucht. So gelangt man durch [4 + 2]-Cycloaddition von 6 an elektronenarme Nitrile<sup>21</sup> zu entsprechenden 2-Dewar-Pyridinen, die bisher vergleichsweise selten untersucht waren. In diesem Zusammenhang interessierte uns nun, ob die gleichen Antiaromaten mit den isomeren Isonitrilen etwa [4 + 1]-Cycloaddition<sup>31</sup> und ggf. Folgereaktionen eingehen. Grundsätzlich sind Cycloadditionsreaktionen von Isonitrilen, in denen sich diese carbenähnlich an Mehrfachbindungssysteme addieren, bekannt, aber recht selten<sup>4,5]</sup>. Allgemeines Interesse verdient deren [2 + 1]-Cycloaddition an ringgespannte<sup>6]</sup> und auch an elektronenreiche Alkine<sup>7]</sup>, die in die Reihe der Cyclopropenimine führt.



Ergebnisse über Reaktionen von Cyclobutadienen mit Isonitrilen liegen unseres Wissens bisher nicht vor, doch ist bekannt, daß der Tetramethylcyclobutadien/Aluminiumtrihalogenid-Komplex 1 mit Cyclohexylisonitril in zwei Richtungen reagiert: Bei 1:1-Stöchiometrie entsteht nach Hydrolyse des Intermediates 2 das Cyclobutencarboxamid 3, während die 1:2-Umsetzung bei gleicher Aufarbeitung über 4 das Cyclopentadiencarboxamid 5 liefert<sup>8</sup>. Einen ganz anderen Verlauf nimmt dagegen die Umsetzung von 6 mit 7.

#### Azapentafulvene 9a-d und f sowie 11e und f

Bringt man die Isonitrile  $7\mathbf{a} - \mathbf{c}$  mit den Cyclobutadienen  $6\mathbf{a}$  bzw. **b** in Pentan bei Raumtemperatur zur Reaktion, so erhält man in einer schnellen Umsetzung die Azapentafulvene  $9\mathbf{a} - \mathbf{d}$  als orangefarbene Öle, die bis auf  $9\mathbf{b}$  kristallisieren (48-96%). Wesentlich langsamer reagiert  $7\mathbf{d}$  mit  $6\mathbf{a}$  in Pentan/Chloroform; überraschenderweise wird hierbei ausschließlich das zu  $9\mathbf{e}$  konstitutionsisomere Azapentafulven  $11\mathbf{e}$  erhalten (49%). Schließlich geht aus der Reaktion  $7\mathbf{e} + 6\mathbf{a}$  ein aus  $9\mathbf{f}$  und  $11\mathbf{f}$  bestehendes Isomerengemisch hervor (60%, Verhältnis ca. 3:1, s. später), das nicht aufgetrennt werden konnte.

Elementare Zusammensetzung, IR- und <sup>1</sup>H-NMR-Spektren sowie die Farbe der Produkte geben erste Hinweise auf die Azapentafulvenstruktur. Entscheidend für



Chem. Ber. 119 (1986)

die Festlegung des Ringgerüstes und die Substituentenanordnung sind aber die <sup>13</sup>C-NMR-Spektren, die für **9a** angefertigte Strukturanalyse sowie die später abgehandelten Hydrolysereaktionen, die in die Cyclopentadienonreihe führen.

Außer den <sup>13</sup>C-Resonanzen der Alkylreste der Esterfunktionen, der *tert*-Butylgruppen sowie der Iminosubstituenten von 9a - d bzw. 11e (s. Tab. 1) treten keine weiteren Signale im Bereich sp<sup>3</sup>-hybridisierter Kohlenstoffe auf. Dies schließt von vorneherein bicyclische Strukturen wie 8 und 10 aus, die als Primärprodukte der Isonitrilreaktionen durchaus denkbar sind.

Im Bereich sp<sup>2</sup>-hybridisierter C-Atome erscheinen jeweils sechs Signale, von denen vier den Gerüstkohlenstoffen C-2 bis C-5 ( $\delta = 120.0 - 172.8$ , s. Tab. 1) zugeordnet werden können. Die beiden verbleibenden Resonanzen kommen dann dem Carbonylkohlenstoff der Estergruppen ( $\delta = 167.9 - 171.6$ ) und dem Azomethinkohlenstoff ( $\delta = 171.5 - 180.0$ ) (s. Tab. 1) zu.

| <sup>13</sup> C-NMR(CDCl <sub>3</sub> ,δ in ppm) |                              |                              |                                      |                              |          |                                                                              |  |  |
|--------------------------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|----------|------------------------------------------------------------------------------|--|--|
| C-Atome                                          | <u>9</u> a                   | <u>9</u> b                   | °₽⊊                                  | ₽da)                         |          | <u>11e</u>                                                                   |  |  |
|                                                  |                              |                              |                                      | Isomer A                     | Isomer B |                                                                              |  |  |
| с( <u>с</u> н <sub>3</sub> ) <sub>3</sub>        | 28.0<br>30.6<br>31.6<br>33.0 | 30.7<br>31.2<br>31.5<br>33.9 | 28.0<br>31.0<br>31.1<br>31.6<br>33.7 | 28.0<br>30.9<br>31.8<br>33.8 | Þ)       | 27.8<br>32.4<br>32.5<br>33.7                                                 |  |  |
| <u>с</u> (сн <sub>3</sub> )3                     | 34.2<br>34.3<br>35.6         | 34.5<br>35.4<br>35.8         | 34.2<br>35.3<br>35.8                 | b)                           | b)       | 35.5<br>35.8<br>37.2                                                         |  |  |
| =N- <u>C</u>                                     | 45.2                         | 58.0                         | 57.6                                 | 62.0                         | 62.7     | 75.9                                                                         |  |  |
| 0 <u>c</u> (CH <sub>3</sub> ) <sub>3</sub>       | 82.2                         | -                            | 81.8                                 | 82.0                         | 82.3     | 82.7                                                                         |  |  |
| C-3                                              | 136.0                        | 135.3                        | 137.1                                | 135.7                        | 139.7    | 172.8                                                                        |  |  |
| C-5                                              | 140.6                        | 145.5                        | 146.2                                | 140.4                        | 144.4    | 153,9                                                                        |  |  |
| C-2                                              | 148.3                        | 151.7                        | 151.4                                | 147.8                        | 145.4    | 120.0                                                                        |  |  |
| C-4                                              | 154.0                        | 153.0                        | 151.7                                | 152.9                        | 153.5    | 159,9                                                                        |  |  |
| ⊆02 <sup>t</sup> Bu                              | 170.1                        | 171.6                        | 170.6                                | 170.5                        | 170.4    | 167.9                                                                        |  |  |
| C-1                                              | 178.2                        | 172.4                        | 171.5                                | 172.3                        | 171.6    | 180,0                                                                        |  |  |
| Sonstige<br>Signale                              | _                            | 51.4<br>(OCH <sub>3</sub> )  |                                      | b)                           | b)       | 21.7(Ary]-CH <sub>3</sub> )<br>129.5, 129.7,<br>135.2, 144.8<br>(Aromaten-C) |  |  |

Tab. 1. <sup>13</sup>C-NMR-Daten der Azapentafulvene 9a-d und 11e

<sup>a)</sup> Die Zuordnung zu **A** und **B** erfolgt aufgrund der Signalintensitäten. – <sup>b)</sup> Eindeutige Zuordnung ist wegen der Überlagerung von *tert*-Butyl- und Cyclohexylsignalen nicht möglich.

Damit darf für beide Produktreihen ein Azapentafulvengerüst als gesichert gelten, doch ist die Substituentenfolge an diesem nach wie vor unklar. Die Problemlösung ergibt sich aus der für 9a durchgeführten Strukturanalyse (s. später) sowie aus der guten Übereinstimmung seiner <sup>13</sup>C-NMR-Daten mit denen von 9b-d; davon hebt sich 11e sehr deutlich ab (vgl. Tab. 1). Markant sind vor allem die Unterschiede in den chemischen Verschiebungen der Ringkohlenstoffe der ester-

substituierten Doppelbindung. Während C-3 von  $9\mathbf{a} - \mathbf{d}$  ( $\delta = 135.3 - 139.7$ ) bei vergleichsweise hohem Feld absorbiert, ist der gleiche Kohlenstoff in 11e naturgemäß stark tieffeldverschoben ( $\delta = 172.8$ ). Umgekehrt verhält es sich mit C-2: Der Tieffeldlage bei  $9\mathbf{a} - \mathbf{d}$  ( $\delta = 145.4 - 151.7$ ) steht die Resonanz von 11e bei  $\delta = 120.0$  gegenüber. Wie erwartet, treten derart auffällige Differenzen in den chemischen Verschiebungen von C-4 und C-5, die beide *tert*-butylsubstituiert sind, nicht auf (s. Tab. 1). Um die Frage zu beantworten, ob ein Ringkohlenstoff einen Ester- oder einen *tert*-Butylsubstituenten besitzt, nutzt man die vielfach bewährte Beobachtung, daß nur letzterer im protonengekoppelten <sup>13</sup>C-NMR-Spektrum als verbreitertes Signal erscheint, was einer kleinen <sup>3</sup>J<sub>CH</sub>-Kopplung zugesprochen wird.

Die Azapentafulvene 9a - c und 11e stellen einheitliche Verbindungen dar. Im Gegensatz dazu besteht 9d aus zwei Isomeren, die zwar kaum im 1H-, wohl aber im <sup>13</sup>C-NMR-Spektrum zu unterscheiden sind (Verhältnis  $A: B \approx 3:1$ ). Die nur geringen Differenzen der <sup>13</sup>C-Resonanzen beider Isomeren (s. Tab. 1), die gute Übereinstimmung mit entsprechenden Werten von 9a-c sowie das Hydrolyseergebnis (ausschließlich Bildung von 20a, s. später) bestätigen die Konstitution beider Isomeren gemäß 9d und lassen nur die Deutung zu, daß es sich entweder um syn/anti-Isomere an der Azomethingruppe handelt<sup>9)</sup> oder daß der Cyclopentadieniminorest einmal axial und zum anderen äquatorial am Cyclohexanring gebunden ist. Letzteres scheint weniger plausibel zu sein, da der sterisch aufwendige Rest ausschließlich eine äquatoriale Position im Sechsring einnehmen sollte<sup>10</sup>, syn/anti-Isomerie des hier diskutierten Typs wurde z.B. auch für das aus 3,3,6,6-Tetramethyl-1-thia-4-cycloheptin und Cyclohexylisonitril erhaltene Cyclopropenimin gefunden mit einer Koaleszenztemperatur von 145°C ( $\Delta G_c^* = 23.8 \text{ kcal mol}^{-1})^6$ ). Inversionsbarrieren mindestens gleicher Größenordnung findet man auch bei Cyclopentadienhydrazonen<sup>11)</sup>.



Einen von den bisherigen Ergebnissen abweichenden Verlauf weist die Umsetzung von 6a mit dem Isonitril 7e auf. Zunächst geht die Spezifität der Reaktion verloren; man erhält ein 3:1-Gemisch (indirekt <sup>1</sup>H-NMR-spektroskopisch aus den Hydrolyseprodukten ermittelt, s. später) aus den Azapentafulvenen 9f und 11f, die säulenchromatographisch nicht aufgetrennt werden konnten. Das Isomere 9f ist nicht beständig und tautomerisiert selbst bei -30 °C zum gelben (Methylen-

amino)cyclopentadien 12, das durch fraktionierte Kristallisation rein erhalten wird.

Im <sup>1</sup>H-NMR-Spektrum beobachtet man zwei Einprotonensignale bei  $\delta = 3.35$ bzw. 7.13, die 1-H sowie dem Azomethinproton<sup>12)</sup> zuzuordnen sind. Im Einklang mit unserem Strukturvorschlag ist ein tert-Butylsignal markant hochfeldverschoben ( $\delta = 0.98$  gegenüber 1.30, 1.41 bzw. 1.56 für die weiteren tBu-Reste), bei dem es sich mit hoher Wahrscheinlichkeit um den 1-tert-Butylrest handelt. Im protonengekoppelten <sup>13</sup>C-NMR-Spektrum von 12 läßt sich zunächst eindeutig der sp<sup>3</sup>-Ringkohlenstoff C-1 zuordnen ( $\delta = 55.7$ ,  ${}^{1}J_{CH} = 130$  Hz); beide Signale sind erwartungsgemäß verbreitert (s. die Strukturdiskussion für 9/11). Der Azomethinkohlenstoff absorbiert bei  $\delta = 143.4$  und ist anhand der <sup>1</sup>J<sub>CH</sub>-Kopplung leicht zu identifizieren. Die übrigen vier Ringkohlenstoffe treten bei  $\delta = 140.4$  (C-2, estersubstituiert) bzw. 153.9-159.8 (C-3, -4 und -5) in Resonanz. Aufgrund der NMRspektroskopischen Untersuchung ist nicht auszuschließen, daß der ursprüngliche Methylenwasserstoff im umgelagerten Produkt an C-3 oder C-5 gebunden ist; in diesem Fall müßten dem primär zu 12 führenden [1,5]-H-Shift weitere H-Verschiebungen folgen. Über eine der Umlagerung  $9f \rightarrow 12$  vergleichbare Wasserstoffverschiebung  $(13 \rightarrow 14)$  ist kürzlich am Triazapentafulvensystem berichtet worden<sup>13)</sup>.

#### Mechanistische Betrachtungen

Die Reaktion  $6+7 \rightarrow 9$  bzw. 11 ist nur sinnvoll zu interpretieren, wenn man Primärschritte annimmt, die zu den Bicyclen 8 bzw. 10 führen und deren Ringöffnung die Produktbildung erklärt. Ob man den einleitenden Schritt – wie eingangs angedeutet<sup>3)</sup> – als [4 + 1]-Reaktion an die Cyclobutadienkohlenstoffe C-2/C-3 bzw. C-1/C-4 auffaßt oder als [2 + 1]-Cycloaddition an C-3/C-4 bzw. C-1/ C-2 ist ohne Relevanz für die Produktbildung. Obwohl der Isonitrilangriff an C-1/C-4 bzw. C-1/C-2 sterisch günstiger ist, bevorzugen die Isonitrile – auch wenn sie selbst voluminöse Substituenten besitzen, wie etwa 7b – den Angriff an zwei *tert*-butylsubstituierten Kohlenstoffen von 6. Dies legt die Vermutung nahe, daß der Primärschritt der Reaktion bevorzugt elektronisch kontrolliert abläuft.

Einige [2 + 1]-Cycloadditionsreaktionen von Isonitrilen sind, wie eingangs erwähnt<sup>6,7</sup>, bekannt. Reaktionen des [4 + 1]-Typs wurden unseres Wissens bisher nur an Hetero-1,3-dienen, so z.B. an Tetrazinen<sup>13</sup> und Tetrathiooxalsäure-dimethylester<sup>14</sup>) realisiert.

#### Röntgenstrukturanalyse des Azapentafulvens 9a

Die Konstitution der Azapentafulvene 9 und 11 wird durch eine exemplarische Röntgenstrukturanalyse für 9a abgesichert. Bindungslängen und -winkel sind in Tab. 2 aufgeführt, ein ORTEP-Plot des Moleküls ist in Abb. 1 wiedergegeben.

In den Bindungslängen der Cyclopentadieneinheit zeigt sich deutliche Bindungsalternanz zwischen den Doppelbindungen C(1)-C(2) (1.349 Å) bzw. C(3)-C(4) (1.338 Å) und den Einfachbindungen C(2)-C(3) (1.527 Å), C(1)-C(5) (1.528 Å) bzw. C(4)-C(5) (1.511 Å). Der Abstand C(5)-N(1) beträgt 1.265 Å

Tab. 2. Bindungslängen (Å) und -winkel (°) in 9a

| Bindungslängen                                                                                                                                                                                                                                                                                                                                   | Bindungswi                                           | Bindungswinkel                                       |                                                      |                                                                                                                                                                                                          |                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 01-C17 1.206(6) C4 -C13<br>02-C17 1.335(6) C6 -C7<br>02-C18 1.503(6) C6 -C8<br>N1-C5 1.265(7) C6 -C9<br>N1-C10 1.467(7) C11-C12<br>C1-C2 1.349(7) C11-C22<br>C1-C5 1.528(6) C11-C23<br>C1-C1 1.552(7) C13-C14<br>C2-C3 1.527(6) C13-C15<br>C2-C6 1.541(7) C13-C15<br>C3-C4 1.338(7) C18-C19<br>C3-C17 1.497(7) C18-C20<br>C4-C5 1.511(7) C18-C21 | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 4 -C13-C15<br>4 -C13-C16<br>(4-C13-C15<br>(4-C13-C16<br>(5-C13-C16<br>(5-C13-C16<br>(-C17-C2<br>-C17-C3<br>2 -C17-C3<br>2 -C18-C19<br>2 -C18-C21<br>2 -C18-C20<br>19-C18-C20<br>19-C18-C21<br>20-C18-C21 | 108.6(4)<br>111.3(4)<br>108.8(5)<br>108.0(5)<br>109.9(5)<br>125.0(5)<br>124.4(4)<br>110.6(4)<br>108.2(4)<br>112.2(5)<br>111.1(5)<br>112.0(5) |  |  |  |



Abb. 1. ORTEP-Plot von 9a. Die Schwingungsellipsoide entsprechen einer 39proz. Wahrscheinlichkeit

und entspricht dem für Oxime gefundenen Wert<sup>15)</sup>. Grenzstrukturen mit delokalisiertem  $6\pi$ -System im Fünfring und positiv geladenem, zweibindigem Stickstoff spielen demnach keine besondere Rolle bei der Beschreibung der Bindungssituation. Im wesentlichen trifft dies auch für die strukturanalytisch untersuchten Verbindungen 15<sup>16)</sup>, 16<sup>17)</sup> und 17<sup>18)</sup> zu; lediglich bei den aminosubstituierten Fulvenen 18 und 19<sup>19)</sup> ist eine gewisse "Nivellierung" der Einfach- und Doppelbindungslängen erkennbar, die auf die Beteiligung einer aromatischen Grenzstruktur gemäß 19B hindeutet.

Im Cyclopentadienring von 9a sind die Doppelbindungen vergleichbar lang wie in 15-19 (1.349 bzw. 1.338 gegenüber 1.34-1.39 Å), während eine deutliche Diskrepanz vor allem im C(2)-C(3)-Abstand (1.527 gegenüber 1.39-1.47 Å) existiert. Da ähnlich große Werte auch für *tert*-butylsubstituierte Cyclopentadienone

(1.49-1.57 Å) gefunden werden<sup>20</sup>, muß man diese Bindungsdehnung auf Substituentenhinderung an den betroffenen Kohlenstoffen zurückführen.



Der wohl schwerwiegendste strukturelle Unterschied zwischen 9a und 15-19 liegt darin, daß bei 9a weder das Cyclopentadieniminsystem noch der Cyclopentadienring selbst planar sind. So weist letzterer eine Faltung von 19.9° entlang der C(1)-C(4)-Verbindungslinie auf; C(5) liegt um 0.31 Å außerhalb der Ebene C(1)-C(2)-C(3)-C(4). Der entsprechende Wert für N(1) bezüglich der Ebene C(1)-C(5)-C(4) beträgt ebenfalls 0.31 Å (s. auch Abb. 2).



Abb. 2. Seitenansicht des Cyclopentadienimingerüstes von 9a ohne Substituenten

Diese bei 15-19 nicht auftretende Abweichung von der Planarität des Ringgerüstes ist vermutlich ebenfalls auf sterische Substituenteneinflüsse zurückzuführen.

## Hydrolyse der Azapentafulvene 9a-d, f und 11e, f

Behandelt man die Azapentafulvene 9a-d mit wäßriger Salzsäure/Ethanol, so erfolgt schnelle Hydrolyse zu den 1-Oxocyclopentadien-3-carbonsäureestern 20a und b. Die Spaltung von 11e verläuft analog und liefert den 1-Oxocyclopentadien-2-carbonsäureester 21, bedarf jedoch einer wesentlich längeren Reaktionsdauer. Diese ist auch für das Isomerenpaar 9f/11f wegen der langsamen Hydrolyse von 11f erforderlich; man erhält ein 3:1-Gemisch aus 20a und 21. Das Gesamtbild der Hydrolysereaktionen harmoniert somit völlig mit der Zuordnung der aus den Umsetzungen 6a, b + 7a - e hervorgegangenen Produkte zu den Reihen 9 bzw. 11.



In den UV-Spektren (*n*-Hexan) von **20a** und **21** findet man intensitätsschwache  $\pi \rightarrow \pi^*$ -Übergänge bei 410 (log  $\varepsilon = 2.21$ ) bzw. 417 nm (log  $\varepsilon = 2.20$ ) sowie eine zweite wesentlich intensivere Bande bei 213 (log  $\varepsilon = 3.79$ ) bzw. 218 nm (log  $\varepsilon = 4.03$ ), die auch für andere *tert*-butylsubstituierte Cyclopentadienone charakteristisch sind<sup>21,22</sup>).

In den <sup>13</sup>C-NMR-Spektren von **20a, b** bzw. **21** beobachtet man neben den Signalen für Esterreste und *t*Bu-Gruppen die fünf sp<sup>2</sup>-hybridisierten Ringkohlenstoffe, wobei C-2 bis C-5 von **20a** und **b** im Bereich  $\delta = 135.8 - 159.3$  absorbieren, während im Falle von **21** die entsprechenden Resonanzen – weit auseinandergezogen – zwischen  $\delta = 125.4$  und 183.6 auftreten. Das gleiche Phänomen tritt auch bei den Azapentafulven-Vorstufen **9** und **11** auf. Es wird verständlich, wenn man bedenkt, daß Cyclopentadienone alternierende Ladungsverteilung mit Elektronendefizit in den  $\beta$ - und Elektronenüberschuß in den  $\alpha$ -Positionen aufweisen<sup>23)</sup>, was die bekannten Konsequenzen auf die betroffenen C-Atome zur Folge hat. Ist der  $\alpha$ -Kohlenstoff (C-2) *tert*-butylsubstituiert ( $\rightarrow$  Tieffeldshift) und trägt der  $\beta$ -Kohlenstoff (C-3) einen Esterrest, so rücken beide wie in **20** zusammen. Im Gegensatz dazu verstärkt eine 2-ständige Estergruppe die Hochfeldlage von C-2, während eine 3-*t*Bu-Gruppe eine weitere Tieffeldverschiebung verursacht, was das Auseinanderrücken dieser Resonanzen verursacht<sup>24)</sup>.

#### Photochemische Isomerisierung $21 \rightarrow 20a$

*tert*-Butylsubstituierte Cyclopentadienone haben in den letzten Jahren beachtliches Interesse erlangt, da sie potentielle Tetrahedranvorstufen darstellen<sup>25,26</sup>; die Synthese von Tetra-*tert*-butyltetrahedran belegt dies eindrucksvoll<sup>27</sup>. Unter diesem Aspekt schien es sinnvoll zu sein, auch das photochemische Verhalten von 20 und 21 zu untersuchen.



Bestrahlt man die 1-Oxocyclopentadiencarbonsäureester 20a und 21 in Chloroform bei Raumtemperatur ( $\lambda \ge 280$  nm), so erweist sich 20a als photostabil, während 21 unter den gleichen Bedingungen quantitativ zu 20a isomerisiert (<sup>1</sup>H- NMR-spektroskopisch). Der Verlauf der Photoreaktion läßt sich so interpretieren, daß einleitend eine Valenzisomerisierung stattfindet ( $21 \rightarrow 22$ ), der eine Walk-Umlagerung ( $22 \rightarrow 23$ ) und als abschließender Schritt die Bicyclo[2.1.0]pentenon/Cyclopentadienon-Umwandlung ( $23 \rightarrow 20a$ ) folgen. Somit verhalten sich 20a und 21 weitgehend konform zu den entsprechenden Tri-*tert*-butylcyclopentadienonen (jeweils H anstelle von CO<sub>2</sub>tBu)<sup>28</sup>.

## Addition von Kohlenmonoxid an 6a

Die glatte [4 + 1]-Reaktion der Isonitrile 7 mit 6 ließ uns auch der Frage nachgehen, ob das isoelektronische Kohlenmonoxid etwa mit dem Antiaromaten 6a entsprechend reagiert. Gleichzeitig bietet sich hier die Chance, die 1-Oxocyclopentadiencarbonsäureester 20a und/oder 21 unmittelbar aus 6a zugänglich zu machen.



Das Experiment in Kohlenmonoxid-gesättigtem Pentan bei Raumtemperatur erfüllt die Erwartungen: Es liefert ausschließlich 20a. In Analogie zu den Isonitrilreaktionen nehmen wir das bicyclische 23 als Zwischenstufe für die Bildung des 1-Oxocyclopentadien-3-carbonsäureesters an.

Kohlenmonoxid ist üblicherweise nur unter drastischen Bedingungen oder mit Hilfe von Katalysatoren mit Alkenen oder 1,3-Dienen zur Reaktion zu bringen<sup>29)</sup>. Dies trifft grundsätzlich auch für den Palladiumdichlorid/Tetraphenylcyclobutadien-Komplex 24 zu, der mit Kohlenmonoxid in Tetracyclon (25) umgewandelt werden kann<sup>30)</sup>. Das hochreaktive, cyclische 1,3-Dien 6a durchbricht also diese Regel.

Der Deutschen Forschungsgemeinschaft danken wir für finanzielle Unterstützung, dem Fonds der Chemischen Industrie für ein Promotionsstipendium (J. F.). Frau M. Alester schulden wir Dank für die Ausführung der Elementaranalysen.

### **Experimenteller** Teil

Schmelzpunkte (unkorrigiert): Mettler FP 61 (Aufheizrate 3°C/min). – Elementaranalysen: Perkin-Elmer Analyser 240. – IR-Spektren: Beckman IR 20A. – UV-Spektren: Zeiss CMR 10. – <sup>1</sup>H-NMR-Spektren: Varian EM 360, Varian EM 390, Bruker WP 200 (Tetramethylsilan als interner Standard). – <sup>13</sup>C-NMR-Spektren: Bruker WP 200 (Tetramethylsilan als interner Standard). – Massenspektren: Varian MAT 311. – Säulenchromatographie: Kieselgel der Firma Macherey und Nagel (0.05–0.2 mm); die Trennungen wurden an DC-Fertigfolien Polygram Sil  $G/UV_{254}$  mit den für die Säulenchromatographie verwendeten Fließmitteln verfolgt. – Alle Umsetzungen der Cyclobutadiene **6a** und b wurden unter Argon ausgeführt (Schlenkrohrtechnik); die Reaktionsgefäße wurden vor Gebrauch mehrmals evakuiert, ausgeheizt und mit Argon belüftet. Die Lösungsmittel waren wasserfrei und unter Argon destilliert sowie aufbewahrt.

Ausgangsverbindungen: Die Cyclobutadiene **6a** und **b** wurden aus Diazo(1,2,3-tri-tertbutyl-2-cyclopropen-1-yl)essigsäure-tert-butylester<sup>31)</sup> bzw. -methylester<sup>32)</sup> im Gegensatz zu bisherigen Gepflogenheiten nicht photolytisch, sondern thermisch nach der in Lit.<sup>33)</sup> angegebenen Vorschrift hergestellt. Die Isonitrile **7b-f** sind käuflich<sup>34)</sup>; **7a**: <sup>35)</sup>.

Allgemeine Vorschrift zur Herstellung der 1-Iminocyclopentadien-3-carbonsäureester 9a-d: Zu der Lösung von 6a bzw. b in 5 ml Pentan gibt man bei Raumtemp. tropfenweise die äquimolare Menge an frisch destilliertem Isonitril 7a-c und rührt solange, bis die dunkelbraune Lösung orangerot geworden ist. Nach Eindampfen bei 25°C/15 Torr wird das noch wenig Ausgangsverbindungen enthaltende Öl an 25 g Kieselgel (Säule:  $50 \times 1.5$ cm) mit ca. 200 ml Hexan/Ether (4:1) chromatographiert.

2,4,5-Tri-tert-butyl-1-(methylimino)-2,4-cyclopentadien-3-carbonsäure-tert-butylester (9a): Ansatz: 700 mg (2.2 mmol) 6a, 90 mg (2.2 mmol) 7a. Reaktionsdauer ca. 2-3 min. Man erhält 800 mg Öl, das nach Anreiben und Kühlen auf  $-10^{\circ}$ C kristallisiert. Absaugen und Waschen mit wenig auf  $-30^{\circ}$ C gekühltem Petrolether (30-75°C) liefert 430 mg (55%) 9a als orangefarbene Kristalle vom Schmp. 87°C. – IR (KBr): 1709 (CO), 1615, 1588 cm<sup>-1</sup> (C=C/C=N). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.28, 1.35, 1.36, 1.55 (jeweils s, 9H, tBu), 3.57 (s, 3H, Me). – MS (70 eV): m/z = 361 (5%, M<sup>+</sup>), 305 (19, M-C<sub>4</sub>H<sub>8</sub>), 290 (45), 260 (35, M-2C<sub>4</sub>H<sub>9</sub>, -CO<sub>2</sub>), 249 (20), 248 (52), 192 (15), 57 (100, C<sub>4</sub>H<sub>9</sub>), 41 (45, C<sub>3</sub>H<sub>5</sub>). – <sup>13</sup>C-NMR-Daten s. Tab. 1.

C23H39NO2 (361.6) Ber. C 76.40 H 10.87 N 3.87 Gef. C 76.7 H 10.81 N 3.8

2,4,5-Tri-tert-butyl-1-(tert-butylimino)-2,4-cyclopentadien-3-carbonsäure-methylester (9b): Ansatz: 1.0 g (3.6 mmol) 6b, 300 mg (3.6 mmol) 7b. Reaktionsdauer ca. 0.5 min. Man erhält 620 mg (48%) 9b als orangefarbenes, nicht kristallisierendes Öl. – IR (Film): 1724 (CO), 1604 cm<sup>-1</sup> (C=C/C=N). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.21, 1.25, 1.31, 1.36 (jeweils s, 9H, tBu), 3.74 (s, 3H, OMe). – <sup>13</sup>C-NMR-Daten s. Tab. 1.

C23H39NO2 (361.6) Ber. C 76.40 H 10.87 N 3.87 Gef. C 75.5 H 10.77 N 3.7

2,4,5-Tri-tert-butyl-1-(tert-butylimino)-2,4-cyclopentadien-3-carbonsäure-tert-butylester (9c): Ansatz: 1.0 g (3.1 mmol) 6a, 260 mg (3.1 mmol) 7b. Reaktionsdauer ca. 2 min. Man erhält 1.2 g Öl, das nach Anreiben und Kühlen auf -10 °C kristallisiert. Absaugen und Waschen mit wenig auf -30 °C gekühltem Petrolether (30-75 °C) liefert 820 mg (65%) 9c als orangefarbene Kristalle vom Schmp. 81 °C. – IR (KBr): 1704 (CO), 1605 cm<sup>-1</sup> (C=C/ C=N). – UV (n-Hexan):  $\lambda_{max}$  (log  $\varepsilon$ ) = 252 (4.04), 391 nm (2.73). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.28, 1.33, 1.34, 1.37, 1.54 (jeweils s, 9H, tBu). – <sup>13</sup>C-NMR-Daten s. Tab. 1.

C<sub>26</sub>H<sub>45</sub>NO<sub>2</sub> (403.7) Ber. C 77.37 H 11.24 N 3.47 Gef. C 77.5 H 11.04 N 3.4

2,4,5-Tri-tert-butyl-1-(cyclohexylimino)-2,4-cyclopentadien-3-carbonsäure-tert-butylester (9d, Stereoisomerengemisch): Ansatz: 700 mg (2.2 mmol) 6a, 240 mg (2.2 mmol) 7c. Reaktionsdauer ca. 2 min. Man erhält 900 mg (96%) 9d als orangefarbenes Öl, das nach mehreren Wochen erstarrt. – IR (Film): 1709 (CO), 1608 cm<sup>-1</sup> (C=C/C=N). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 1.30$  (s, 9H, tBu), 1.34 (s, 18H, tBu), 1.56 (s, 9H, tBu), 1.67–2.43 (m, 10H, 2-, 3-, 4-, 5und 6-Cyclohexyl-H), 3.56–4.16 (m, 1H, 1-Cyclohexyl-H). – <sup>13</sup>C-NMR-Daten s. Tab. 1.

C<sub>28</sub>H<sub>47</sub>NO<sub>2</sub> (429.7) Ber. C 78.27 H 11.03 N 3.26 Gef. C 78.1 H 10.94 N 2.9

3,4,5-Tri-tert-butyl-1-[ (p-tosylmethyl)imino]-2,4-cyclopentadien-2-carbonsäure-tert-butylester (11e): Zu der Lösung von 1.4 g (4.4 mmol) **6a** in 10 ml Pentan/Chloroform (4:1) gibt man 850 mg (4.4 mmol) 7d und rührt 2 Wochen bei Raumtemp., wobei ein Farbumschlag von braun nach rot eintritt. Eindampfen bei 25°C/15 Torr und Chromatographie des Rückstandes an 25 g Kieselgel (Säule: 50 × 1.5 cm) mit 200 ml Hexan/Ether (4:1) liefert 1.1 g (49%) 11e als orangerotes Öl, das beim Anreiben kristallisiert, Schmp. 108°C. – IR (KBr): 1665 (CO), 1614 (C=C/C=N), 1322, 1140 cm<sup>-1</sup> (SO<sub>2</sub>). – UV (n-Hexan):  $\lambda_{max}$  (log  $\varepsilon$ ) = 221 (4.34), 243 (4.15, Schulter), 344 (2.34), 418 nm (2.38). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.27 (s, 9H, tBu), 1.33 (s, 18H, tBu), 1.53 (s, 9H, tBu), 2.42 (s, 3H, Me), 4.97 (s, 2H, CH<sub>2</sub>), 7.28, 7.84 (jeweils d, <sup>3</sup>J<sub>H,H</sub> = 9 Hz, 2H, Aromaten-H). – MS (70 eV): m/z = 515 (2%, M<sup>+</sup>), 409 (5), 304 (39), 260 (20, M-2C<sub>4</sub>H<sub>9</sub>-CO<sub>2</sub>), 247 (37), 246 (28), 232 (48), 149 (12), 139 (17), 91 (26), 57 (100, C<sub>4</sub>H<sub>9</sub>), 44 (88, CO<sub>2</sub>), 41 (85, C<sub>3</sub>H<sub>5</sub>). – <sup>13</sup>C-NMR-Daten s. Tab. 1.

C30H45NO4S (515.7) Ber. C 69.87 H 8.80 N 2.72 Gef. C 69.4 H 8.82 N 2.6 1,3,5-Tri-tert-butyl-4-[(ethoxycarbonylmethylen)amino]-2,4-cyclopentadien-2-carbonsäure-tert-butylester (12): Zu der Lösung von 1.4 g (4.4 mmol) 6a in 5 ml Pentan tropft man bei Raumtemp. 490 mg (4.4 mmol) 7e und rührt bis zum Farbumschlag von braun nach orange (ca. 3 min). Eindampfen bei 25°C/15 Torr und Chromatographie des Rückstandes an 25 g Kieselgel (Säule:  $50 \times 1.5$  cm) mit 200 ml Hexan/Ether (4:1) liefert ein öliges Gemisch aus 9f und 11f (60%, Verhältnis ca. 3:1, s. hierzu die Hydrolyse des Gemisches). Man beläßt einige Tage bei Raumtemp. (Isomerisierung  $9f \rightarrow 12$ ), nimmt in 2 ml Petrolether ( $30-75^{\circ}C$ ) auf und kühlt auf -30 °C, wobei 12 ausfällt. Absaugen, Eindampfen der Mutterlauge und mehrfache Wiederholung des Vorganges liefert insgesamt 250 mg (13%) 12 als orangegelbe Kristalle vom Schmp. 104°C. – IR (KBr): 1712, 1698 (CO), 1583, 1555 cm<sup>-1</sup> (C=C/ C = N. – UV (*n*-Hexan):  $\lambda_{max}$  (log  $\varepsilon$ ) = 246 (3.83), 317 (3.59), 393 nm (3.77). – <sup>1</sup>H-NMR  $(CDCl_3): \delta = 0.98, 1.30$  (jeweils s, 9H, tBu), 1.31 (t,  ${}^{3}J_{H,H} = 7$  Hz, 3H,  $OCH_2CH_3$ ), 1.41, 1.56 (jeweils s, 9H, tBu), 3.35 (s, 1H, 1-H), 4.32 (q,  ${}^{3}J_{H,H} = 7$  Hz, 2H, OCH<sub>2</sub>), 7.13 (s, 1H, CH=).  $-{}^{13}$ C-NMR (CDCl<sub>3</sub>):  $\delta = 14.3$  (OCH<sub>2</sub>CH<sub>3</sub>), 28.1, 31.0, 31.3, 31.7 [C(CH<sub>3</sub>)<sub>3</sub>], 35.2, 35.3, 36.7 [ $C(CH_3)_3$ ], 55.7 (d,  ${}^1J_{C,H} = 130$  Hz, C-1), 61.1 (OCH<sub>2</sub>), 82.3 [ $OC(CH_3)_3$ ], 140.4 (C-2), 143.4 (d,  ${}^{1}J_{CH} = 169$  Hz, N=CH), 153.9, 155.3, 159.8 (C-3, -4 und -5), 165.2, 169.8 (CO-Ester). - MS (70 eV): m/z = 433 (<1%, M<sup>+</sup>), 293 (30), 292 (20), 237 (23), 236 (92), 234 (17), 181 (27), 180 (58), 178 (36), 57 (100, C<sub>4</sub>H<sub>9</sub>), 41 (51, C<sub>3</sub>H<sub>5</sub>).

C<sub>26</sub>H<sub>43</sub>NO<sub>4</sub> (433.6) Ber. C 72.02 H 10.00 N 3.23 Gef. C 71.9 H 9.83 N 3.2

Allgemeine Vorschrift zur Hydrolyse der 1-Iminocyclopentadien-3-carbonsäureester 9a-d: Zu der Lösung von 9a-d in 30 ml Ethanol/Wasser (5:1) tropft man unter Rühren bei Raumtemp. solange 10proz. wäßrige Salzsäure, bis die an der Eintropfstelle auftretende Rotfärbung über 1 h bestehen bleibt. Eindampfen bei 50°C/15 Torr, Aufnehmen des Rückstandes in ca. 5 ml Petrolether (30-75°C), Abfiltrieren von ungelösten Bestandteilen und erneutes Eindampfen bei 30°C/15 Torr liefert die 1-Oxocyclopentadien-3-carbonsäureester 20a bzw. b.

2,4,5-Tri-tert-butyl-1-oxo-2,4-cyclopentadien-3-carbonsäure-tert-butylester (20a): Ansatz: 400 mg (1.1 mmol) 9a. Ausb. 270 mg (70%) 20a als orangefarbene Kristalle vom Schmp. 89°C. – IR (KBr): 1707 (Schulter), 1700 cm<sup>-1</sup> (CO). – UV (n-Hexan):  $\lambda_{max}$  (log  $\varepsilon$ ) = 213 (3.79, Schulter), 410 nm (2.21). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.21, 1.31, 1.34, 1.55 (jeweils s, 9H, tBu). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 28.1, 29.9, 31.7, 31.9 [C(CH<sub>3</sub>)<sub>3</sub>], 33.3, 33.7, 35.2 [C(CH<sub>3</sub>)<sub>3</sub>], 83.5 [OC(CH<sub>3</sub>)<sub>3</sub>], 135.8 (C-5), 139.6 (C-2), 145.8 (C-3), 159.3 (C-4), 169.2 (CO<sub>2</sub>tBu), 205.2 (C-1). – MS (70 eV): m/z = 348 (2%, M<sup>+</sup>), 249 (14), 235 (29), 221 (20), 57 (100, C<sub>4</sub>H<sub>9</sub>), 43 (24, C<sub>3</sub>H<sub>7</sub>), 41 (50, C<sub>3</sub>H<sub>5</sub>).

C<sub>22</sub>H<sub>36</sub>O<sub>2</sub> (348.5) Ber. C 75.82 H 10.41 Gef. C 75.7 H 10.26

Die Hydrolyse von 9c und d liefert ebenfalls 20a (<sup>1</sup>H-NMR-Vergleich durch Peakerhöhung mit dem durch Hydrolyse von 9a erhaltenen Produkt).

2.4,5-Tri-tert-butyl-1-oxo-2,4-cyclopentadien-3-carbonsäure-methylester (20b): Ansatz: 400 mg (1.3 mmol) 9b. Ausb. 230 mg (57%) 20b als orangefarbene Kristalle vom Schmp. 95°C. – IR (KBr): 1718, 1696 cm<sup>-1</sup> (CO). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.16, 1.29, 1.32 (jeweils s, 9H, tBu), 3.73 (s, 3H, OMe). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 29.2, 31.4, 31.9 [C(CH<sub>3</sub>)<sub>3</sub>], 33.0, 33.6, 35.0 [C(CH<sub>3</sub>)<sub>3</sub>], 51.7 (OCH<sub>3</sub>), 136.2 (C-5), 138.5 (C-2), 143.7 (C-3), 157.9 (C-4), 170.6 (CO<sub>2</sub>Me), 204.4 (C-1).

C19H30O3 (306.5) Ber. C 74.47 H 9.87 Gef. C 73.9 H 9.95

3,4,5-Tri-tert-butyl-1-oxo-2,4-cyclopentadien-2-carbonsäure-tert-butylester (21): Zu der Lösung von 250 mg (0.50 mmol) 11e in 30 ml Ethanol/Wasser (5:1) tropft man unter Rühren bei Raumtemp. 2 ml 10proz. wäßrige Salzsäure und dampft nach 6 h bei 50 °C/15 Torr ein. Aufnahme des Rückstandes in ca. 5 ml Petrolether (30-75 °C), Abfiltrieren von ungelösten Anteilen und erneutes Eindampfen bei 25 °C/15 Torr liefert 150 mg (89%) 21 als orangefarbene Kristalle vom Schmp. 105 °C aus Petrolether (30-75 °C). – IR (KBr): 1698, 1694 (Schulter) cm<sup>-1</sup> (CO). – UV (*n*-Hexan):  $\lambda_{max}$  (log  $\varepsilon$ ) = 218 (4.03), 417 nm (2.20). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.34, 1.42, 1.43, 1.52 (jeweils s, 9H, tBu). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 28.1, 31.6, 32.0, 33.2 [C(CH<sub>3</sub>)<sub>3</sub>], 34.8, 35.7, 37.3 [C(CH<sub>3</sub>)<sub>3</sub>], 81.7 [OC(CH<sub>3</sub>)<sub>3</sub>], 125.4 (C-2), 146.4 (C-5), 168.3 (C-4), 164.9 (CO<sub>2</sub>tBu), 183.6 (C-3), 196.7 (C-1). – MS (70 eV): m/z = 348 (2%, M<sup>+</sup>), 291 (19, M – C<sub>4</sub>H<sub>9</sub>), 236 (21, M – 2C<sub>4</sub>H<sub>8</sub>), 235 (100, M – C<sub>4</sub>H<sub>9</sub>, C<sub>4</sub>H<sub>8</sub>), 209 (19), 153 (15), 57 (59, C<sub>4</sub>H<sub>9</sub>), 43 (18, C<sub>3</sub>H<sub>7</sub>), 41 (31, C<sub>3</sub>H<sub>5</sub>).

C<sub>22</sub>H<sub>36</sub>O<sub>2</sub> (348.5) Ber. C 75.82 H 10.41 Gef. C 74.9 H 10.35

Die Hydrolyse des Isomerengemisches 9f/11f analog 11e liefert ein Gemisch aus 20a und 21 im Verhältnis 3:1 (<sup>i</sup>H-NMR-spektroskopisch). Die Identifizierung erfolgt nach der gleichen Methode durch Peakerhöhung mit den durch Hydrolyse von 9a und 11e erhaltenen Produkten.

Photochemische Isomerisierung von 21 zu 20a: Die Lösung von 10 mg 21 in Chloroform wird in einem 5-mm-NMR-Rohr 7 h bei Raumtemp. mit der Quecksilberhochdrucklampe Philips HPK 125 W bestrahlt, wobei quantitativ 20a entsteht (<sup>1</sup>H-NMR-Nachweis durch Peakerhöhung mit dem durch Hydrolyse von 9a erhaltenen Produkt).

Herstellung von 20a aus 6a und Kohlenmonoxid: Durch die Lösung von 700 mg (2.2 mmol) 6a in 15 ml Pentan wird bei Raumtemp. 3 h Kohlenmonoxid geleitet und anschließend im verschlossenen Schlenkrohr 10 Tage bei Raumtemp. gerührt, wobei Farbumschlag von braun nach orange eintritt. Eindampfen bei  $25^{\circ}$ C/15 Torr, Kühlen des verbleibenden Öls auf  $-10^{\circ}$ C, Absaugen der abgeschiedenen Kristalle und Waschen mit wenig auf  $-30^{\circ}$ C gekühltem Petrolether ( $30-75^{\circ}$ C) liefert 250 mg (33%) 20a als orangefarbene Kristalle vom Schmp. 89°C. IR- und <sup>1</sup>H-NMR-Vergleich mit dem durch Hydrolyse von 9a erhaltenen Produkt.

#### Röntgenstrukturanalyse von 9a<sup>36)</sup>

Kristalldaten: C<sub>23</sub>H<sub>39</sub>NO<sub>2</sub>, M = 361.6; monoklin, Raumgruppe P2<sub>1</sub>; a = 6.153(2), b = 18.016(5), c = 10.509(3)Å,  $\beta = 104.63(4)^{\circ}$ ; V = 1127.2Å<sup>3</sup>; Z = 2,  $d_{calc} = 1.065$  g cm<sup>-3</sup>,  $\mu = 0.6$  cm<sup>-1</sup>.

Datensammlung: Geeignete Kristalle wurden bei der lösungsmittelfreien Kristallisation von säulenchromatographisch gereinigtem öligem Produkt erhalten. Kristallabmessungen  $0.60 \times 0.25 \times 0.13$  mm. Messung einer Viertelkugel im Bereich  $2 < \Theta < 22^{\circ}$ ,  $h\bar{6} \rightarrow 6$ ,  $k0 \rightarrow 19$ ,  $l0 \rightarrow 11$ , Scanweite  $(0.85 + 0.35 \text{ tan }\Theta)^{\circ}$ ,  $\Theta/2\Theta$ Scan, Scangeschwindigkeit  $1.5 - 5.0^{\circ}$  min<sup>-1</sup>, 1429 unabhängige Reflexe. Die Intensitäten der drei Kontrollreflexe (2  $\overline{6}$  1, 1 2 5, 3 1 1) blieben während der Meßzeit konstant.

Strukturaufklärung und -verfeinerung: Die Struktur wurde mit MULTAN 82 (RANTAN) gelöst. Fehlende Schweratome sowie der größte Teil der Wasserstoffatome wurden in Differenz-Fourier-Synthesen lokalisiert, die restlichen Wasserstoffatome wurden geometrisch berechnet. Schweratome wurden anisotrop, H-Atome mit fixierten Temperaturfaktoren  $(B = 7.0 \text{ Å}^2)$  mit 1211 Reflexen  $[I > 2\sigma(I)]$  bis zu R = 0.048,  $R_w = 0.047$  verfeinert. Das größte Shift/Error-Verhältnis für die Schweratome war an diesem Punkt 0.06.

#### CAS-Registry-Nummern

6a: 83747-03-9 / 6b: 51067-52-8 / 7a: 593-75-9 / 7b: 7188-38-7 / 7c: 931-53-3 / 7d: 36635-61-7 / 7e: 2999-46-4 / 9a: 102261-27-8 / 9b: 102261-28-9 / 9c: 102261-29-0 / 9d (E): 102261-30-3 / 9d (Z): 102261-37-0 / 9f: 102261-32-5 / 11e: 102261-31-4 / 11f: 102261-33-6 / 12: 102261-34-7 / 20a: 102261-35-8 / 20b: 102261-36-9 / 21: 102283-19-2

- <sup>1)</sup> 12. Mitteil.: J. Fink, W. Rösch, U.-J. Vogelbacher und M. Regitz, Angew. Chem. 98, 265 (1986); Angew. Chem., Int. Ed. Engl. 25, 280 (1986). <sup>2)</sup> J. Fink und M. Regitz, Bull. Soc. Chim. Fr. 1986 (im Druck).
- <sup>3)</sup> Formal läßt sich die gleiche Reaktion auch als [2+1]-Cycloaddition interpretieren. Aufgrund des ausgeprägten 1,3-Diencharakters von 6 (s. die vorhergehenden Arbeiten dieser Serie) bevorzugen wir aber die [4 + 1]-Schreibweise.
- <sup>4)</sup> H. J. Kabbe in I. Ugi, Isonitrile Chemistry, 1. Aufl., S. 93ff., Academic Press, London 1971.
- <sup>5)</sup> P. Hoffmann, D. Marquarding, H. Kliimann und I. Ugi in Z. Rappoport, The Chemistry of the Cyano Group, 1. Aufl., S. 853, Interscience Publishers, New York 1970; H. M. Walborsky und M. P. Periasamy in S. Patai und Z. Rappoport, The Chemistry of the Cyano Group, Supplement C, 1. Aufl., S. 835ff., John Wiley, New York 1983.
- <sup>6)</sup> A. Krebs und H. Kimling, Angew. Chem. 83, 401 (1971); Angew. Chem., Int. Ed. Engl. 10, 409 (1971).
- <sup>7)</sup> A. Krebs, A. Günther, S. Versteylen und S. Schulz, Tetrahedron Lett. 25, 2333 (1984).
- <sup>8)</sup> P. B. J. Driessen und H. Hogeveen, Tetrahedron Lett. 1979, 271.
- <sup>9)</sup> H. Kessler, Angew. Chem. 82, 237 (1970); Angew. Chem., Int. Ed. Engl. 9, 219 (1970).
- <sup>10)</sup> S. Winstein und N. J. Holness, J. Am. Chem. Soc. 77, 5562 (1955).
- <sup>11)</sup> A. Mannschreck und U. Koelle, Tetrahedron Lett. 1967, 863.
- <sup>12)</sup> Vergleichbare Absorptionen von Aldehydiminoverbindungen s. R. Kupfer, S. Meier und E.-U. Würthwein, Synthesis 1984, 688.
- <sup>13)</sup> P. Imming, R. Mohr, E. Müller, W. Overheu und G. Seitz, Angew. Chem. 94, 291 (1982); Angew. Chem., Int. Ed. Engl. 21, 284 (1982).
- <sup>14)</sup> K. Hartke, A. Kumar, G. Henssen, J. Quante und T. Kämpchen, Chem. Ber. 115, 3107 (1982). <sup>15)</sup> H.-C. Mez, Ber. Bunsenges. Phys. Chem. **72**, 389 (1968).
- <sup>16</sup> S. Husebeye, K. Maartmann-Moe, R. E. Bozak und K. L. Rinehart, Acta Chem. Scand., Ser. B 39, 55 (1985).
- <sup>17)</sup> K. Mano und Y. Kushi, Chem. Lett. 1973, 1083.
- <sup>18)</sup> J. F. Chiang und S. H. Bauer, J. Am. Chem. Soc. 92, 261 (1970).
- <sup>19)</sup> H. L. Ammon, Acta Crystallogr., Sect. B 30, 1731 (1974).
- 20) G. Maier, L. H. Franz, H.-G. Hartan, K. Lanz und H. P. Reisenauer, Chem. Ber. 118, 3196 (1985). <sup>21)</sup> E. W. Garbisch und R. F. Sprecher, J. Am. Chem. Soc. 88, 3434 (1966); 91, 6785 (1969).
- <sup>22)</sup> M. A. Fox, K. Campbell, G. Maier und L. H. Franz, J. Org. Chem. 48, 1762 (1983).
- 23) H.-O. Kalinowski, L. H. Franz und G. Maier, Org. Magn. Reson. 17, 6 (1981), und dort zitierte Literatur.
- <sup>24)</sup> S. hierzu auch die Verhältnisse an den Tri-*tert*-butylcyclopentadienonen: Lit.<sup>23)</sup> sowie G. Maier und F. Boßlet, Tetrahedron Lett. 1972, 1025.
- <sup>25)</sup> G. Maier und S. Pfriem, Angew. Chem. 90, 551 (1978); Angew. Chem., Int. Ed. Engl. 17, 519 (1978).

- <sup>26)</sup> G. Maier, K. A. Reuter und L. Franz, Tetrahedron Lett. 26, 1845 (1985).
- <sup>27)</sup> G. Maier, S. Priem, U. Schäfer und R. Matusch, Angew. Chem. 90, 532 (1978); Angew. Chem., Int. Ed. Engl. 17, 520 (1978).
- <sup>28)</sup> G. Maier und A. Alzérreca, Angew. Chem. 85, 1056 (1973); Angew. Chem., Int. Ed. Engl. 12, 1015 (1973); G. Maier, U. Schäfer, W. Sauer und H. Hartan, Tetrahedron Lett. 1978, 1837.
- <sup>29)</sup> J. Falbe, Carbon Monoxide in Organic Synthesis, 1. Aufl., S. 147ff., Springer, Berlin 1970; J. Falbe, New Synthesis with Carbon Monoxide, 1. Aufl., S. 414ff., Springer, Berlin 1980.
- <sup>30)</sup> L. M. Vallarino und G. Santarella, Gazz. Chim. Ital. 94, 252 (1964).
- <sup>31)</sup> P. Eisenbarth und M. Regitz, Chem. Ber. 115, 3796 (1982).
- <sup>32)</sup> S. Masamune, N. Nakamura, M. Suda und H. Ona, J. Am. Chem. Soc. 95, 8481 (1973); A. Heydt, H. Heydt, B. Weber und M. Regitz, Chem. Ber. 115, 2965 (1982).
- <sup>33)</sup> H. Wingert und M. Regitz, Chem. Ber. 119, 244 (1986).
- 34) Fluka ĂG, D-7910 Neu-Ulm.
- <sup>35)</sup> R. E. Schuster, J. E. Scott und J. Casanova, Org. Synth. 46, 75 (1966).
- <sup>36)</sup> Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-51878, der Autoren und des Zeitschriftenzitats angefordert werden.

[3/86]